
1

Artificial Intelligence 1:
Constraint Satisfaction
problemsproblems

Lecturer: Tom Lenaerts
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie

Outline

 CSP?
 Backtracking for CSP

Pag.10 februari
2008

2
AI 1

 Local search for CSPs
 Problem structure and
decomposition

Constraint satisfaction problems

 What is a CSP?
– Finite set of variables V1, V2, …, Vn

– Finite set of constraints C1, C2, …, Cm

– Nonemtpy domain of possible values for each variable
D D D

Pag.10 februari
2008

3
AI 1

DV1, DV2, … DVn

– Each constraint Ci limits the values that variables can take,
e.g., V1 ≠ V2

 A state is defined as an assignment of values
to some or all variables.

 Consistent assignment: assignment does not
not violate the constraints.

Constraint satisfaction problems

 An assignment is complete when every value
is mentioned.

 A solution to a CSP is a complete assignment
that satisfies all constraints

Pag.10 februari
2008

4
AI 1

that satisfies all constraints.
 Some CSPs require a solution that maximizes

an objective function.
 Applications: Scheduling the time of

observations on the Hubble Space Telescope,
Floor planning, Map coloring, Cryptography

CSP example: map coloring

Pag.10 februari
2008

5
AI 1

 Variables: WA, NT, Q, NSW, V, SA, T
 Domains: Di={red,green,blue}
 Constraints:adjacent regions must have different colors.

– E.g. WA ≠ NT (if the language allows this)
– E.g. (WA,NT) ≠ {(red,green),(red,blue),(green,red),…}

CSP example: map coloring

Pag.10 februari
2008

6
AI 1

 Solutions are assignments satisfying all constraints, e.g.

{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=g
reen}

2

Constraint graph

 CSP benefits
– Standard representation pattern
– Generic goal and successor

functions

Pag.10 februari
2008

7
AI 1

functions
– Generic heuristics (no domain

specific expertise).

Constraint graph = nodes are variables, edges show constraints.
Graph can be used to simplify search.

e.g. Tasmania is an independent subproblem.

Varieties of CSPs

 Discrete variables
– Finite domains; size d ⇒O(dn) complete assignments.

– E.g. Boolean CSPs, include. Boolean satisfiability (NP-complete).

– Infinite domains (integers, strings, etc.)

Pag.10 februari
2008

8
AI 1

(g , g ,)
– E.g. job scheduling, variables are start/end days for each job
– Need a constraint language e.g StartJob1 +5 ≤ StartJob3.
– Linear constraints solvable, nonlinear undecidable.

 Continuous variables
– e.g. start/end times for Hubble Telescope observations.
– Linear constraints solvable in poly time by LP methods.

Varieties of constraints

 Unary constraints involve a single variable.
– e.g. SA ≠ green

 Binary constraints involve pairs of variables.
– e g SA ≠ WA

Pag.10 februari
2008

9
AI 1

e.g. SA ≠ WA

 Higher-order constraints involve 3 or more variables.
– e.g. cryptharithmetic column constraints.

 Preference (soft constraints) e.g. red is better than
green often representable by a cost for each variable
assignment → constrained optimization problems.

Example; cryptharithmetic

Pag.10 februari
2008

10
AI 1

CSP as a standard search problem

 A CSP can easily expressed as a
standard search problem.

 Incremental formulation

Pag.10 februari
2008

11
AI 1

 Incremental formulation
– Initial State: the empty assignment {}.
– Successor function: Assign value to unassigned

variable provided that there is not conflict.
– Goal test: the current assignment is complete.
– Path cost: as constant cost for every step.

CSP as a standard search problem

 This is the same for all CSP’s !!!
 Solution is found at depth n (if there are n

variables).
– Hence depth first search can be used

Pag.10 februari
2008

12
AI 1

– Hence depth first search can be used.

 Path is irrelevant, so complete state
representation can also be used.

 Branching factor b at the top level is nd.
 b=(n-l)d at depth l, hence n!dn leaves (only

dn complete assignments).

3

Commutativity

 CSPs are commutative.
– The order of any given set of actions has no

effect on the outcome.

Pag.10 februari
2008

13
AI 1

– Example: choose colors for Australian
territories one at a time
– [WA=red then NT=green] same as [NT=green then

WA=red]
– All CSP search algorithms consider a single variable

assignment at a time ⇒ there are dn leaves.

Backtracking search

 Cfr. Depth-first search
 Chooses values for one variable at

a time and backtracks when a

Pag.10 februari
2008

14
AI 1

a time and backtracks when a
variable has no legal values left to
assign.

 Uninformed algorithm
– No good general performance (see table p.

143)

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment

SELECT UNASSIGNED VARIABLE(VARIABLES[] i t)

Pag.10 februari
2008

15
AI 1

var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment
result ← RRECURSIVE-BACTRACKING(assignment, csp)
if result ≠ failure then return result
remove {var=value} from assignment

return failure

Backtracking example

Pag.10 februari
2008

16
AI 1

Backtracking example

Pag.10 februari
2008

17
AI 1

Backtracking example

Pag.10 februari
2008

18
AI 1

4

Backtracking example

Pag.10 februari
2008

19
AI 1

Improving backtracking efficiency

 Previous improvements →
introduce heuristics

 General-purpose methods can give

Pag.10 februari
2008

20
AI 1

 General purpose methods can give
huge gains in speed:
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?
– Can we take advantage of problem structure?

Minimum remaining values

Pag.10 februari
2008

21
AI 1

var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

 A.k.a. most constrained variable heuristic
 Rule: choose variable with the fewest legal moves
 Which variable shall we try first?

Degree heuristic

Pag.10 februari
2008

22
AI 1

 Use degree heuristic
 Rule: select variable that is involved in the largest number of

constraints on other unassigned variables.
 Degree heuristic is very useful as a tie breaker.
 In what order should its values be tried?

Least constraining value

Pag.10 februari
2008

23
AI 1

 Least constraining value heuristic
 Rule: given a variable choose the least constraing

value i.e. the one that leaves the maximum
flexibility for subsequent variable assignments.

Forward checking

Pag.10 februari
2008

24
AI 1

 Can we detect inevitable failure early?
– And avoid it later?

 Forward checking idea: keep track of remaining legal
values for unassigned variables.

 Terminate search when any variable has no legal
values.

5

Forward checking

Pag.10 februari
2008

25
AI 1

 Assign {WA=red}
 Effects on other variables connected by constraints

with WA
– NT can no longer be red
– SA can no longer be red

Forward checking

Pag.10 februari
2008

26
AI 1

 Assign {Q=green}
 Effects on other variables connected by constraints with WA

– NT can no longer be green
– NSW can no longer be green
– SA can no longer be green

 MRV heuristic will automatically select NT and SA next, why?

Forward checking

Pag.10 februari
2008

27
AI 1

 If V is assigned blue
 Effects on other variables connected by constraints with WA

– SA is empty
– NSW can no longer be blue

 FC has detected that partial assignment is inconsistent with the
constraints and backtracking can occur.

Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

Pag.10 februari
2008

28
AI 1

3

2

4
X3

{1,2,3,4}
X4

{1,2,3,4}

[4-Queens slides copied from B.J. Dorr CMSC 421 course on AI]

Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

Pag.10 februari
2008

29
AI 1

3

2

4
X3

{1,2,3,4}
X4

{1,2,3,4}

Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{ , ,3,4}

Pag.10 februari
2008

30
AI 1

3

2

4
X3

{ ,2, ,4}
X4

{ ,2,3, }

6

Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{ , ,3,4}

Pag.10 februari
2008

31
AI 1

3

2

4
X3

{ ,2, ,4}
X4

{ ,2,3, }

Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{ , ,3,4}

Pag.10 februari
2008

32
AI 1

3

2

4
X3

{ , , , }
X4

{ ,2,3, }

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{1,2,3,4}

Pag.10 februari
2008

33
AI 1

3

2

4
X3

{1,2,3,4}
X4

{1,2,3,4}

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}

Pag.10 februari
2008

34
AI 1

3

2

4
X3

{1, ,3, }
X4

{1, ,3,4}

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}

Pag.10 februari
2008

35
AI 1

3

2

4
X3

{1, ,3, }
X4

{1, ,3,4}

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}

Pag.10 februari
2008

36
AI 1

3

2

4
X3

{1, , , }
X4

{1, ,3, }

7

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}

Pag.10 februari
2008

37
AI 1

3

2

4
X3

{1, , , }
X4

{1, ,3, }

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}

Pag.10 februari
2008

38
AI 1

3

2

4
X3

{1, , , }
X4

{ , ,3, }

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}

Pag.10 februari
2008

39
AI 1

3

2

4
X3

{1, , , }
X4

{ , ,3, }

Constraint propagation

Pag.10 februari
2008

40
AI 1

 Solving CSPs with combination of heuristics plus forward
checking is more efficient than either approach alone.

 FC checking propagates information from assigned to
unassigned variables but does not provide detection for all
failures.
– NT and SA cannot be blue!

 Constraint propagation repeatedly enforces constraints locally

Arc consistency

Pag.10 februari
2008

41
AI 1

 X → Y is consistent iff
for every value x of X there is some allowed y

 SA → NSW is consistent iff
SA=blue and NSW=red

Arc consistency

Pag.10 februari
2008

42
AI 1

 X → Y is consistent iff
for every value x of X there is some allowed y

 NSW → SA is consistent iff
NSW=red and SA=blue
NSW=blue and SA=???

Arc can be made consistent by removing blue from NSW

8

Arc consistency

Pag.10 februari
2008

43
AI 1

 Arc can be made consistent by removing blue from
NSW

 RECHECK neighbours !!
– Remove red from V

Arc consistency

Pag.10 februari
2008

44
AI 1

 Arc can be made consistent by removing blue from NSW
 RECHECK neighbours !!

– Remove red from V

 Arc consistency detects failure earlier than FC
 Can be run as a preprocessor or after each assignment.

– Repeated until no inconsistency remains

Arc consistency algorithm

function AC-3(csp) return the CSP, possibly with reduced domains
inputs: csp, a binary csp with variables {X1, X2, …, Xn}
local variables: queue, a queue of arcs initially the arcs in csp

while queue is not empty do
(Xi, Xj) ← REMOVE-FIRST(queue)

Pag.10 februari
2008

45
AI 1

if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then
for each Xk in NEIGHBORS[Xi] do
add (Xi, Xj) to queue

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) return true iff we remove a value
removed ← false
for each x in DOMAIN[Xi] do

if no value y in DOMAIN[Xi] allows (x,y) to satisfy the constraints between Xi and Xj

then delete x from DOMAIN[Xi]; removed ← true
return removed

K-consistency

 Arc consistency does not detect all inconsistencies:
– Partial assignment {WA=red, NSW=red} is inconsistent.

 Stronger forms of propagation can be defined using
the notion of k-consistency.

Pag.10 februari
2008

46
AI 1

 A CSP is k-consistent if for any set of k-1 variables
and for any consistent assignment to those
variables, a consistent value can always be assigned
to any kth variable.
– E.g. 1-consistency or node-consistency
– E.g. 2-consistency or arc-consistency
– E.g. 3-consistency or path-consistency

K-consistency

 A graph is strongly k-consistent if
– It is k-consistent and
– Is also (k-1) consistent, (k-2) consistent, … all the way

down to 1-consistent.

Pag.10 februari
2008

47
AI 1

 This is ideal since a solution can be found in
time O(nd) instead of O(n2d3)

 YET no free lunch: any algorithm for
establishing n-consistency must take time
exponential in n, in the worst case.

Further improvements

 Checking special constraints
– Checking Alldif(…) constraint

– E.g. {WA=red, NSW=red}

– Checking Atmost(…) constraint
– Bounds propagation for larger value domains

Pag.10 februari
2008

48
AI 1

– Bounds propagation for larger value domains

 Intelligent backtracking
– Standard form is chronological backtracking i.e. try different value

for preceding variable.
– More intelligent, backtrack to conflict set.

– Set of variables that caused the failure or set of previously assigned variables that
are connected to X by constraints.

– Backjumping moves back to most recent element of the conflict set.
– Forward checking can be used to determine conflict set.

9

Local search for CSP

 Use complete-state representation
 For CSPs

– allow states with unsatisfied constraints
 i i bl l

Pag.10 februari
2008

49
AI 1

– operators reassign variable values

 Variable selection: randomly select any
conflicted variable

 Value selection: min-conflicts heuristic
– Select new value that results in a minimum number of

conflicts with the other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem

max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp
f i 1 t t d

Pag.10 februari
2008

50
AI 1

for i = 1 to max_steps do
if current is a solution for csp then return current
var ← a randomly chosen, conflicted variable from VARIABLES[csp]
value ← the value v for var that minimize CONFLICTS(var,v,current,csp)
set var = value in current

return failure

Min-conflicts example 1

Pag.10 februari
2008

51
AI 1

 Use of min-conflicts heuristic in hill-
climbing.

h=5 h=3 h=1

Min-conflicts example 2

Pag.10 februari
2008

52
AI 1

 A two-step solution for an 8-queens problem using min-
conflicts heuristic.

 At each stage a queen is chosen for reassignment in its
column.

 The algorithm moves the queen to the min-conflict square
breaking ties randomly.

Advantages of local search

 The runtime of min-conflicts is roughly
independent of problem size.
– Solving the millions-queen problem in roughly 50

Pag.10 februari
2008

53
AI 1

steps.

 Local search can be used in an online
setting.
– Backtrack search requires more time

Problem structure

Pag.10 februari
2008

54
AI 1

 How can the problem structure help to find a solution quickly?
 Subproblem identification is important:

– Coloring Tasmania and mainland are independent subproblems
– Identifiable as connected components of constrained graph.

 Improves performance

10

Problem structure

Pag.10 februari
2008

55
AI 1

 Suppose each problem has c variables out of a total of n.
 Worst case solution cost is O(n/c dc), i.e. linear in n

– Instead of O(d n), exponential in n

 E.g. n= 80, c= 20, d=2
– 280 = 4 billion years at 1 million nodes/sec.
– 4 * 220= .4 second at 1 million nodes/sec

Tree-structured CSPs

Pag.10 februari
2008

56
AI 1

 Theorem: if the constraint graph has no loops
then CSP can be solved in O(nd 2) time

 Compare difference with general CSP, where
worst case is O(d n)

Tree-structured CSPs

Pag.10 februari
2008

57
AI 1

 In most cases subproblems of a CSP are connected as a tree
 Any tree-structured CSP can be solved in time linear in the

number of variables.
– Choose a variable as root, order variables from root to leaves such that every node’s

parent precedes it in the ordering. (label var from X1 to Xn)
– For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(Xj),Xj)
– For j from 1 to n assign Xj consistently with Parent(Xj)

Nearly tree-structured CSPs

Pag.10 februari
2008

58
AI 1

 Can more general constraint graphs be reduced to
trees?

 Two approaches:
– Remove certain nodes
– Collapse certain nodes

Nearly tree-structured CSPs

Pag.10 februari
2008

59
AI 1

 Idea: assign values to some variables so that the remaining
variables form a tree.

 Assume that we assign {SA=x} ← cycle cutset
– And remove any values from the other variables that are inconsistent.
– The selected value for SA could be the wrong one so we have to try all

of them

Nearly tree-structured CSPs

Pag.10 februari
2008

60
AI 1

 This approach is worthwhile if cycle cutset is small.
 Finding the smallest cycle cutset is NP-hard

– Approximation algorithms exist

 This approach is called cutset conditioning.

11

Nearly tree-structured CSPs

 Tree decomposition of the
constraint graph in a set of
connected subproblems.

 Each subproblem is solved
independently

Pag.10 februari
2008

61
AI 1

 Resulting solutions are
combined.

 Necessary requirements:
– Every variable appears in ar least one

of the subproblems.
– If two variables are connected in the

original problem, they must appear
together in at least one subproblem.

– If a variable appears in two
subproblems, it must appear in each
node on the path.

Summary

 CSPs are a special kind of problem: states defined by values of
a fixed set of variables, goal test defined by constraints on
variable values

 Backtracking=depth-first search with one variable assigned per
node

Pag.10 februari
2008

62
AI 1

 Variable ordering and value selection heuristics help
significantly

 Forward checking prevents assignments that lead to failure.
 Constraint propagation does additional work to constrain values

and detect inconsistencies.
 The CSP representation allows analysis of problem structure.
 Tree structured CSPs can be solved in linear time.
 Iterative min-conflicts is usually effective in practice.

Taak 2: CSP and sudoku

 Variabelen?
– 81 vakjes

 Domeinen?

http://arti.vub.ac.be/cursus/2005-2006/AI1/taak2/sudoku.htm

Pag.10 februari
2008

63
AI 1

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

– Tussen 1-9

 Constraints?
– Tussen elke twee

variabelen in dezelfde
rij, kolom en 3x3 group.

Taak 2: CSP and sudoku

 DEEL 1
– CSP oplossen met

forward checking en
MGU heuristiek.

Pag.10 februari
2008

64
AI 1

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 DEEL 2
– Local search op basis

van Evolutionary
transition algorithm
(ETA).

 Schrijf verslag.

