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Artificial Intelligence 1: 
Constraint Satisfaction 
problemsproblems

Lecturer: Tom Lenaerts
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie

Outline

 CSP?
 Backtracking for CSP

Pag.10 februari 
2008

2
AI 1

 Local search for CSPs
 Problem structure and 
decomposition

Constraint satisfaction problems

 What is a CSP?
– Finite set of variables V1, V2, …, Vn

– Finite set of constraints C1, C2, …, Cm

– Nonemtpy domain of possible values for each variable 
D  D   D
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DV1, DV2, … DVn

– Each constraint Ci limits the values that variables can take, 
e.g., V1 ≠ V2

 A state is defined as an assignment of values 
to some or all variables.

 Consistent assignment: assignment does not 
not violate the constraints. 

Constraint satisfaction problems

 An assignment is complete when every value 
is mentioned. 

 A solution to a CSP is a complete assignment 
that satisfies all constraints
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that satisfies all constraints.
 Some CSPs require a solution that maximizes 

an objective function. 
 Applications: Scheduling the time of 

observations on the Hubble Space Telescope, 
Floor planning, Map coloring, Cryptography

CSP example: map coloring
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 Variables: WA, NT, Q, NSW, V, SA, T
 Domains: Di={red,green,blue}
 Constraints:adjacent regions must have different colors.

– E.g. WA ≠ NT (if the language allows this)
– E.g. (WA,NT) ≠ {(red,green),(red,blue),(green,red),…}

CSP example: map coloring
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 Solutions are assignments satisfying all constraints, e.g.

{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=g
reen}
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Constraint graph

 CSP benefits
– Standard representation pattern
– Generic goal and successor 

functions
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functions
– Generic heuristics (no domain 

specific expertise).

Constraint graph = nodes are variables, edges show constraints.
Graph can be used to simplify search.

e.g. Tasmania is an independent subproblem.

Varieties of CSPs

 Discrete variables
– Finite domains; size d ⇒O(dn) complete assignments.

– E.g. Boolean CSPs, include. Boolean satisfiability (NP-complete).

– Infinite domains (integers, strings, etc.)
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( g , g , )
– E.g. job scheduling, variables are start/end days for each job
– Need a constraint language e.g StartJob1 +5 ≤ StartJob3.
– Linear constraints solvable, nonlinear undecidable. 

 Continuous variables
– e.g. start/end times for Hubble Telescope observations.
– Linear constraints solvable in poly time by LP methods.

Varieties of constraints

 Unary constraints involve a single variable.
– e.g. SA ≠ green

 Binary constraints involve pairs of variables.
– e g  SA ≠ WA
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e.g. SA ≠ WA

 Higher-order constraints involve 3 or more variables.
– e.g. cryptharithmetic column constraints.

 Preference (soft constraints) e.g. red is better than 
green often representable by a cost for each variable 
assignment → constrained optimization problems.

Example; cryptharithmetic
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CSP as a standard search problem

 A CSP can easily expressed as a 
standard search problem.

 Incremental formulation
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 Incremental formulation
– Initial State: the empty assignment {}.
– Successor function: Assign value to unassigned 

variable provided that there is not conflict.
– Goal test: the current assignment is complete.
– Path cost: as constant cost for every step.

CSP as a standard search problem

 This is the same for all CSP’s !!!
 Solution is found at depth n (if there are n

variables).
– Hence depth first search can be used
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– Hence depth first search can be used.

 Path is irrelevant, so complete state 
representation can also be used.

 Branching factor b at the top level is nd.
 b=(n-l)d at depth l, hence n!dn leaves (only 

dn complete assignments).
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Commutativity

 CSPs are commutative.
– The order of any given set of actions has no 

effect on the outcome.
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– Example: choose colors for Australian 
territories one at a time
– [WA=red then NT=green] same as [NT=green then 

WA=red]
– All CSP search algorithms consider a single variable 

assignment at a time ⇒ there are dn leaves.

Backtracking search

 Cfr. Depth-first search
 Chooses values for one variable at 

a time and backtracks when a 
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a time and backtracks when a 
variable has no legal values left to 
assign.

 Uninformed algorithm
– No good general performance (see table p. 

143)

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment

SELECT UNASSIGNED VARIABLE(VARIABLES[ ] i t )
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var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment 
result ← RRECURSIVE-BACTRACKING(assignment, csp)
if result ≠ failure  then return result
remove {var=value} from assignment

return failure

Backtracking example
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Backtracking example
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Backtracking example
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Backtracking example
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Improving backtracking efficiency

 Previous improvements →
introduce heuristics

 General-purpose methods can give 
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 General purpose methods can give 
huge gains in speed:
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?
– Can we take advantage of problem structure?

Minimum remaining values
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var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

 A.k.a. most constrained variable heuristic
 Rule: choose variable with the fewest legal moves
 Which variable shall we try first?

Degree heuristic
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 Use degree heuristic
 Rule: select variable that is involved in the largest number of 

constraints on other unassigned variables.
 Degree heuristic is very useful as a tie breaker.
 In what order should its values be tried?

Least constraining value
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 Least constraining value heuristic
 Rule: given a variable choose the least constraing 

value i.e. the one that leaves the maximum 
flexibility for subsequent variable assignments.

Forward checking
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 Can we detect inevitable failure early?
– And avoid it later?

 Forward checking idea: keep track of remaining legal 
values for unassigned variables.

 Terminate search when any variable has no legal 
values.
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Forward checking
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 Assign {WA=red}
 Effects on other variables connected by constraints 

with WA
– NT can no longer be red
– SA can no longer be red

Forward checking
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 Assign {Q=green}
 Effects on other variables connected by constraints with WA

– NT can no longer be green
– NSW can no longer be green
– SA can no longer be green

 MRV heuristic will automatically select NT and SA next, why?

Forward checking
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 If V is assigned blue
 Effects on other variables connected by constraints with WA

– SA is empty
– NSW can no longer be blue

 FC has detected that partial assignment is inconsistent with the 
constraints and backtracking can occur.

Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}
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3

2

4
X3

{1,2,3,4}
X4

{1,2,3,4}

[4-Queens slides copied from B.J. Dorr  CMSC 421 course on AI]

Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{1,2,3,4}

Pag.10 februari 
2008

29
AI 1

3

2

4
X3

{1,2,3,4}
X4

{1,2,3,4}

Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{  ,  ,3,4}
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3

2

4
X3

{ ,2, ,4}
X4

{ ,2,3, }
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Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{ , ,3,4}
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X3

{ ,2, ,4}
X4

{ ,2,3, }

Example: 4-Queens Problem

1
32 41

X1
{1,2,3,4}

X2
{ , ,3,4}
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2

4
X3

{ , , , }
X4

{ ,2,3, }

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{1,2,3,4}
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4
X3

{1,2,3,4}
X4

{1,2,3,4}

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}
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4
X3

{1,  ,3,  }
X4

{1,  ,3,4}

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}
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{1,  ,3,  }
X4

{1,  ,3,4}

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}
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3

2

4
X3

{1,  ,  ,  }
X4

{1,  ,3,  }
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Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}
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{1,  ,  ,  }
X4

{1,  ,3,  }

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}
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{1,  ,  ,  }
X4

{  ,  ,3,  }

Example: 4-Queens Problem

1
32 41

X1
{ ,2,3,4}

X2
{ , , ,4}
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2

4
X3

{1,  ,  ,  }
X4

{  ,  ,3,  }

Constraint propagation
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 Solving CSPs with combination of heuristics plus forward 
checking is more efficient than either approach alone.

 FC checking propagates information from assigned to 
unassigned variables but does not provide detection for all 
failures.
– NT and SA cannot be blue!

 Constraint propagation repeatedly enforces constraints locally

Arc consistency
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 X → Y is consistent iff
for every value x of X there is some allowed y

 SA → NSW is consistent iff
SA=blue and NSW=red

Arc consistency
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 X → Y is consistent iff
for every value x of X there is some allowed y

 NSW → SA is consistent iff
NSW=red and SA=blue
NSW=blue and SA=???

Arc can be made consistent by removing blue from NSW
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Arc consistency
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 Arc can be made consistent by removing blue from 
NSW

 RECHECK neighbours !!
– Remove red from V

Arc consistency
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 Arc can be made consistent by removing blue from NSW
 RECHECK neighbours !!

– Remove red from V

 Arc consistency detects failure earlier than FC
 Can be run as a preprocessor or after each assignment.

– Repeated until no inconsistency remains

Arc consistency algorithm

function AC-3(csp) return the CSP, possibly with reduced domains
inputs: csp, a binary csp with variables {X1, X2, …, Xn}
local variables: queue, a queue of arcs initially the arcs in csp

while queue is not empty do
(Xi, Xj) ← REMOVE-FIRST(queue)
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if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then
for each Xk in NEIGHBORS[Xi ] do
add (Xi, Xj) to queue 

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) return true iff we remove a value
removed ← false
for each x in DOMAIN[Xi] do

if no value y in DOMAIN[Xi] allows (x,y) to satisfy the constraints between Xi and Xj

then delete x from DOMAIN[Xi]; removed ← true
return removed

K-consistency

 Arc consistency does not detect all inconsistencies:
– Partial assignment {WA=red, NSW=red} is inconsistent.

 Stronger forms of propagation can be defined using 
the notion of k-consistency.
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 A CSP is k-consistent if for any set of k-1 variables 
and for any consistent assignment to those 
variables, a consistent value can always be assigned 
to any kth variable.
– E.g. 1-consistency or node-consistency
– E.g. 2-consistency or arc-consistency
– E.g. 3-consistency or path-consistency

K-consistency

 A graph is strongly k-consistent if
– It is k-consistent and
– Is also (k-1) consistent, (k-2) consistent, … all the way 

down to 1-consistent.
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 This is ideal since a solution can be found in 
time O(nd) instead of O(n2d3)

 YET no free lunch: any algorithm for 
establishing n-consistency must take time 
exponential in n, in the worst case.

Further improvements 

 Checking special constraints
– Checking Alldif(…) constraint 

– E.g. {WA=red, NSW=red}

– Checking Atmost(…) constraint
– Bounds propagation for larger value domains
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– Bounds propagation for larger value domains

 Intelligent backtracking
– Standard form is chronological backtracking i.e. try different value 

for preceding variable.
– More intelligent, backtrack to conflict set.

– Set of variables that caused the failure or set of previously assigned variables that 
are connected to X by constraints.

– Backjumping moves back to most recent element of the conflict set.
– Forward checking can be used to determine conflict set.
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Local search for CSP

 Use complete-state representation
 For CSPs

– allow states with unsatisfied constraints
 i i bl  l
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– operators reassign variable values

 Variable selection: randomly select any 
conflicted variable

 Value selection: min-conflicts heuristic
– Select new value that results in a minimum number of 

conflicts with the other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem

max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp
f  i  1 t  t d
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for i = 1 to max_steps do
if current is a solution for csp then return current
var ← a randomly chosen, conflicted variable from VARIABLES[csp]
value ← the value v for var that minimize CONFLICTS(var,v,current,csp)
set var = value in current

return failure

Min-conflicts example 1
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 Use of min-conflicts heuristic in hill-
climbing.

h=5 h=3 h=1

Min-conflicts example 2
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 A two-step solution for an 8-queens problem using min-
conflicts heuristic.

 At each stage a queen is chosen for reassignment in its 
column.

 The algorithm moves the queen to the min-conflict square 
breaking ties randomly.

Advantages of local search

 The runtime of min-conflicts is roughly 
independent of problem size.
– Solving the millions-queen problem in roughly 50 
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steps.

 Local search can be used in an online 
setting.
– Backtrack search requires more time

Problem structure
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 How can the problem structure help to find a solution quickly?
 Subproblem identification is important:

– Coloring Tasmania and mainland are independent subproblems
– Identifiable as connected components of constrained graph.

 Improves performance 
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Problem structure
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 Suppose each problem has c variables out of a total of n.
 Worst case solution cost is O(n/c dc), i.e. linear in n

– Instead of O(d n), exponential in n

 E.g. n= 80, c= 20, d=2
– 280 = 4 billion years at 1 million nodes/sec.
– 4 * 220= .4 second at 1 million nodes/sec

Tree-structured CSPs
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 Theorem: if the constraint graph has no loops 
then CSP can be solved in O(nd 2) time

 Compare difference with general CSP, where 
worst case is O(d n)

Tree-structured CSPs
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 In most cases subproblems of a CSP are connected as a tree
 Any tree-structured CSP can be solved in time linear in the 

number of variables.
– Choose a variable as root, order variables from root to leaves such that every node’s 

parent precedes it in the ordering. (label var from X1 to Xn)
– For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(Xj),Xj)
– For j from 1 to n assign Xj consistently with Parent(Xj )

Nearly tree-structured CSPs
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 Can more general constraint graphs be reduced to 
trees?

 Two approaches:
– Remove certain nodes
– Collapse certain nodes

Nearly tree-structured CSPs
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 Idea: assign values to some variables so that the remaining 
variables form a tree.

 Assume that we assign {SA=x} ← cycle cutset
– And remove any values from the other variables that are inconsistent.
– The selected value for SA could be the wrong one so we have to try all 

of them

Nearly tree-structured CSPs
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 This approach is worthwhile if cycle cutset is small.
 Finding the smallest cycle cutset is NP-hard

– Approximation algorithms exist

 This approach is called cutset conditioning.
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Nearly tree-structured CSPs

 Tree decomposition of the 
constraint graph in a set of 
connected subproblems.

 Each subproblem is solved 
independently
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 Resulting solutions are 
combined.

 Necessary requirements:
– Every variable appears in ar least one 

of the subproblems.
– If two variables are connected in the 

original problem, they must appear 
together in at least one subproblem.

– If a variable appears in two 
subproblems, it must appear in each 
node on the path.

Summary

 CSPs are a special kind of problem: states defined by values of 
a fixed set of variables, goal test defined by constraints on 
variable values

 Backtracking=depth-first search with one variable assigned per 
node
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 Variable ordering and value selection heuristics help 
significantly

 Forward checking prevents assignments that lead to failure.
 Constraint propagation does additional work to constrain values 

and detect inconsistencies.
 The CSP representation allows analysis of problem structure.
 Tree structured CSPs can be solved in linear time.
 Iterative min-conflicts is usually effective in practice.

Taak 2: CSP and sudoku

 Variabelen?
– 81 vakjes

 Domeinen?

http://arti.vub.ac.be/cursus/2005-2006/AI1/taak2/sudoku.htm
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

– Tussen 1-9

 Constraints?
– Tussen elke twee 

variabelen in dezelfde 
rij, kolom en 3x3 group.

Taak 2: CSP and sudoku

 DEEL 1
– CSP oplossen met 

forward checking en 
MGU heuristiek.
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 DEEL 2
– Local search op basis 

van Evolutionary 
transition algorithm 
(ETA).

 Schrijf verslag.


